Applying Data Augmentation to Handwritten Arabic Numeral Recognition Using Deep Learning Neural Networks

نویسندگان

  • Akm Ashiquzzaman
  • Abdul Kawsar Tushar
  • Ashiqur Rahman
چکیده

Handwritten character recognition has been the center of research and a benchmark problem in the sector of pattern recognition and artificial intelligence, and it continues to be a challenging research topic. Due to its enormous application many works have been done in this field focusing on different languages. Arabic, being a diversified language has a huge scope of research with potential challenges. A convolutional neural network model for recognizing handwritten numerals in Arabic language is proposed in this paper, where the dataset is subject to various augmentation in order to add robustness needed for deep learning approach. The proposed method is empowered by the presence of dropout regularization to do away with the problem of data overfitting. Moreover, suitable change is introduced in activation function to overcome the problem of vanishing gradient. With these modifications, the proposed system achieves an accuracy of 99.4% which performs better than every previous work on the dataset. Keywords—Data Augmentation, Dropout, ELU, Deep Learning, Neural Network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

The Application of Convolution Neural Networks in Handwritten Numeral Recognition

Convolutional neural networks are a technology that combines artificial neural networks and recent deep learning methods. They have been applied to many image recognition tasks and have attracted the attention of the researchers of many countries in recent years. This paper summarizes the latest development of convolutional neural networks and expounds the relative research of image recognition...

متن کامل

A New Implementation of Deep Neural Networks for Optical Character Recognition and Face Recognition

The automatic analysis and recognition of off-line handwritten characters from images is an important area in many applications. Even with the important progress of recent research in optical character recognition, few problems still wait to be solved specially for Arabic characters. The use of Deep Neural Networks may solve these problems. We present a deep neural network for the handwritten O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.05969  شماره 

صفحات  -

تاریخ انتشار 2017